Journal of Medicinal Chemistry

(C) Copyright 1968 by the American Chemical Sociely

Volume 11, Number 6
Oc'rober 25, 1968

Some Electronic Factors in Drug-Receptor Interactions

Arthur Cammarata ${ }^{\text {I }}$
Department of Chemistry and I'harmaceutical Chemistry, Medical College of Virginia, Richmond, Virginia 2321?

Heceived December 18, 1967

Abstract

Many of the physicochemical approaches to the study of drug action are shown to be interrelated. The principle of hard and soft acids and bases, in its quantitative form, is indicated as applying to drug action.

Physicochemical approaches are being applied increasingly to the study of drug action. The intent of the application of these approaches is either to supplement the information at hand with regard to a given type of drug activity or to provide a rational guide to the synthesis of new compounds of greater activity. A number of attempts have been made to apply molecular orbital methods in these endeavors, but progress has been slow due to the lack of a reasonable theoretical framework within which to work. We wish to report a portion of our perspective on this problem.

Current theories of drug action liken the interaction of a drug with its receptor to the combination of a substrate with an enzyme. By this analogy, the elicitation of a pharmacologic response may be generalized in the Michaelis-Menten formalism as

$$
\mathrm{S}+\mathrm{R} \stackrel{\mathrm{a}}{\rightleftharpoons} \mathrm{Si}^{*} \stackrel{\mathrm{~b}}{\longrightarrow} \text { response }
$$

where S is a drug, R its receptor, and S^{*} * the drugreceptor complex leading to a given biological response. Once this formalism is accepted, the distinction between the current theories of drug action may be considered as corresponding to the choice of response (rate)-determining step. Thus, in the kinetic theory of Paton, ${ }^{2 a}$ the association-dissociation of a drug and receptor (step a) is the response-determining step, while Ariëns' theory ${ }^{2 b}$ places the response-determining step "after" the formation of the drug-receptor complex (step b).

Extending this kinetic analogy further, it may be stated that, in the absence of supplemental studies, the number of steps preceding and following the responsedetermining step is largely unknown. In principle, there are an infinite number of steps that can lead to and follow the response-determining step. As in chemical systens, the actual steps that are taken, which if known would constitute the molecular mechanism of action for a drug, may be considered specific for a given type of drug and receptor. Hence, the theories which invoke a change in the structure ${ }^{3}$ or function ${ }^{4}$ of the re-

[^0]ceptor substance seem to provide mechanistic detail to the Paton and Ariëns theories and represent probable mechanisms of action, at the molecular level, for a given drug-receptor system. According to our rationale, the latter theories may be associated with a category into which a given type of drug action may be placed; they do not appear to be general theories of drug action.

Since the "activated" drug-receptor complex intplicit in the Paton theory or the relatively more stable drug-receptor complex considered in Ariëns' theory is presumed to be the response-determining factor, we will equate drug activity A to the free-energy of formation of a drug-receptor complex, $\Delta G_{\text {RS }}$. Electronic and steric interactions between the drug and its receptor, as well as conformational changes of the receptor substance, are some of the factors that can affect ΔG_{RS}. Following the procedure of Leffler and Grunwald, ${ }^{5}$ and considering only first-order interactions, Δi_{RS} is approximately given by

$$
\begin{align*}
& A=\Delta G_{R S}= \Delta G^{\mathrm{e}}+\Delta G^{\mathrm{d}}+\Delta G^{\mathrm{s}}+\Delta G^{\mathrm{p}}+ \\
& \Delta G^{\mathrm{e}}\left(\Delta G^{\mathrm{d}}+\Delta G^{\mathrm{s}}+\Delta G^{\mathrm{p}}\right)+ \\
& \Delta G^{\mathrm{d}}\left(\Delta G^{\mathrm{e}}+\Delta G^{\mathrm{s}}+\Delta G^{\mathrm{p}}\right)+ \\
& \Delta G^{\mathrm{s}}\left(\Delta G^{\mathrm{e}}+\Delta G^{\mathrm{d}}+\Delta G^{\mathrm{p}}\right)+ \\
& \Delta G^{\mathrm{p}}\left(\Delta G^{\mathrm{e}}+\Delta G^{\mathrm{d}}+\Delta G^{\mathrm{s}}\right) \tag{1}
\end{align*}
$$

where $\Delta G^{e}, \Delta G^{\mathrm{s}}$, and ΔG^{p} are independent contributions to the free-energy due to electronic and steric interactions between drug and receptor and to conformational changes in the receptor, respectively. The quantity ΔG^{d} is introduced to represent the free-energy change due to desolvation which would accompany the union of drug and receptor. In this report, we will consider the case where the interaction terms in eq 1 are constant or negligible. Thus, eq 1 is reduced to the relatively simple expression
$A_{n}=\Delta G_{\mathrm{RS}}=\Delta G^{\mathrm{e}}{ }_{n}+\Delta G^{\mathrm{d}}{ }_{n}+\Delta G^{\mathrm{s}}{ }_{n}+\Delta G^{\mathrm{p}}{ }_{n}+k$
The subscript n designates that for a series of N compounds tested against a common receptor there will be n of these equations, $i . e ., N=1,2, \ldots, n$.

If compounds in a congeneric or a homologous series of compounds differ only by a substituent, it is not un-

[^1]reasonable to assume that the difference in their biological activities is due solely to differing properties of the substituents. The activity change resulting from the clange in substituent is from eq 2 .
\[

$$
\begin{equation*}
\delta A_{n}=\delta\left(\Delta G^{\mathrm{e}}\right)_{n}+\delta\left(\Delta G^{\mathrm{d}}\right)_{n}+\delta\left(\Delta G^{\mathrm{s}}\right)_{n}+\delta\left(\Delta G^{\mathrm{P}}\right)_{n} \tag{3}
\end{equation*}
$$

\]

When the conformational clange of receptor substance makes a constant contribution to the total free cnergy, eq 3 can have its terms directly related to one of the linear free-energy equations discussed by Hanseh ${ }^{6}$

$$
\begin{equation*}
\delta A n=a \sigma+b \pi+c E_{\mathrm{s}}^{\prime}+k^{\prime} \tag{4}
\end{equation*}
$$

where σ, π, and $E_{\text {s }}^{\prime}$ are the Hanmett, ${ }^{\text {; }}$ Hanseh, ${ }^{8}$ and Taft ${ }^{9}$ constants identified with electronic, lipophilic, and steric properties of a substituent, respectively. It is appropriate to point out that desolvation in eq 4 is specifically identified with hydrophobie interactions. ${ }^{10}$

Bellean appears to have used a special case of eq 3 in arriving at his perturbation theory of drug action, ${ }^{3,4}$ When the contribution of one substituent relative to the other is negligible, the difference in activity between two structurally related compounds is due solely to the properties of a single substituent. This, assuming the allosteric term constant, Bellean accounted for the difference in AChE activities between I and II (Table I) on the basis of a sum of the electronic and hydrophobic properties associated with a methyl group. On the: ot ther hand, the sum of the activity difference between I and II and I and III is greater than the observed alctivity of IV (Table I). Hence, it was concluded" that a conformational change of the receptor substanco (AChE) had occurred.

> Tablé I

(\%,m,	1 l	12.	Rel putency
I	II	II	0.1
11^{*}	CH_{3}	II	100
$111{ }^{\text {a }}$	11	$\mathrm{ClIF}^{\text {a }}$	20
11	CH_{3}	CH_{3}	0.5

a in forms.
In further extending eq 2 , it sliall be assumed that the contribution due to conformational changes in the receptor substance is constant. Within the present approximation, estimates of drug activity, based on calculated or otherwise determined atomic or substituent properties, which greatly exceed the observed drug activity will be tentatively attributed to conformational changes of the receptor substance.

Since there is usually no a priori or a posteriori knowledge of the particular atoms primarily responsible for the artivity of a drug, we will formally require each atom of a drug, s, to interact with each atom, r, of the

[^2]drug receptor site. Wach pair of interacting atoms may then be considered as making an independent contribution to the electronic. desolvation, and steric frec-mergy terms in eq $\stackrel{y}{2}$.
\[

$$
\begin{equation*}
A_{n}=\sum_{r} \sum_{s}\left(E_{\mathrm{ri}}^{*}+L_{\mathrm{rs}}+V_{\mathrm{rs}}\right)_{n}+k_{i} \tag{5}
\end{equation*}
$$

\]

Based on in recent theory of chemical reactivity, ${ }^{1: 1 \%}$ which is discussed later in some detail, the electronic and desolvation components, L_{rs} and $L_{\text {rs }}$, respectively, can be considered additive. In the case of steric interactions, $\Gamma_{r s}$, the assumption of constant receptor consformation emables ns to think of this component as constituting a geonetrically dependent volume requirement analogons to the Madelung constant used in erystallography. ${ }^{14}$

In a series of structurally related drugs, if $E_{\mathrm{rs}}, L_{\mathrm{rs}}$: and $V_{\text {rs }}$ are constant for atoms common to each drug, the terms corresponding to these atoms in ed 5 may be included with the constant k. Noting that the contribntion of a group is the sum of its atonic contributions. en 5 call also be written

$$
\begin{equation*}
A_{u}=\sum_{\S} a_{,, 4}+\mu \tag{6}
\end{equation*}
$$

where an atom or group contribution is defined as

$$
\begin{equation*}
a_{\mathrm{s}}=\sum_{\mathrm{r}^{r}} \sum_{s^{\prime}}\left(L_{\mathrm{r}^{\prime} \mathrm{s}^{\prime}}^{\prime}+L_{\mathrm{r}^{\prime} \mathrm{s}^{\prime}}+V_{\mathrm{r}^{\prime} \mathrm{s}^{r}}\right) \tag{7}
\end{equation*}
$$

in which the primes designate interactions identified with a given atom or group. Equation 6 can be recognized as the nathematical model used by free and Wilson ${ }^{15}$ in correlating certain types of drug activity.

While it may be suitable to consider E_{rs} and L_{rs} constant for aliphatic or saturated compounds, it is evident that conjugation of atoms essential to drug activity with a varied substituent can lead to changes in E_{rs}. This slould be particularly true for aromatio substances, in which case the Free and Wilson method affords averaged values of a_{g}. These considerations suggest that the Free and Wilson approach should be least accurate when applied to aromatic compounds. This seemstrue from the data at hand (compare Tables II and III).

Molecular orbital (MO) methods have been highly successful in predicting the electronic properties of aromatice compoundsta 17 and a theory has been developed ${ }^{12.13}$ which places these methods within the present scheme.

Neglecting desolvation for the present, the Klopman and Hudson ${ }^{12,13}$ treatment of chemical reactivity is based on the limits of ect 8 for small electronic perturbations, i.e., small β.

Only the first approximation to the first term of eq 8 is given here, since in this form it is readily recognized as
(12) G. Klopman and R. F. Hudson, Theoret. Chim. Acta, 8, 105 (1965).
113) G. Klopman, I. Am. Chem. Soc., 90, 223 (1968).
(14) G. M. Barrow, "Plysical C'liemistry." McGraw-Hill Bo,k (\%... lne.. New York, N. Ǩ.. 1966.
,15) S. M. Free and J. W. Wilson, I. Hed. Chem. 7, 395 (1964).
(lt) A. Streitwieser, Jr., "Molecular Orbital Theory for Oryanic Clamists." Joln Wiley and Sons, Inc. Jew Yurk. N. Y.. 1961.
(17) B. Pullman and A. D'ullman, "Quantuin Biochemistry," deatemite: l'ress. New York, N. Y., 1983.

Table II
Free and Wilson Approach Applied to Some Tetracyclines (TC)

In vitro act. against	
S. aureus rel to TC	
Obsd d	Calcd b
525	443
320	343
275	333
160	146
140	156
75	51
60	-8
21	102
15	2
15	41

${ }^{a}$ J. L. S'pencer, J. J. Hlavka, J. Petisi, H. M. Krazinski, and J. H. Boothe, J. Med. Chem., 6, 405 (1963). ${ }^{\text {b }}$ As given in ref $1 \bar{o}$, Table II.

Table III
Free and Wilson Approach Applied to a Series of Hypoglycemics

Max \% fall in blood

R_{1}	R2	R_{3}	Max \% fall in blood glucose in rats at constant dose	
			Obsd ${ }^{\text {c }}$	Calcd ${ }^{\text {d }}$
CH_{3}	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\left(\mathrm{CH}_{2}\right)_{6}$	42.0	37.8
CH_{3}	CH_{3}	$\left(\mathrm{CH}_{2}\right)_{5}$	39.1	39.9
$\left(\mathrm{CH}_{2}\right)_{2}{ }^{\text {a }}$	$\left(\mathrm{CH}_{2}\right)_{2}{ }^{\text {a }}$	$\left(\mathrm{CH}_{2}\right)_{5}$	35.6	33.5
CH_{3}	CH_{3}	$\left(\mathrm{CH}_{2}\right)_{6}$	34.9	39.2
$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{3} \mathrm{H}_{5}$	$\left(\mathrm{CH}_{2}\right)_{6}$	34.4	36.5
H	CH_{3}	$\left(\mathrm{CH}_{2}\right)_{6}$	33.9	26.7
$\left(\mathrm{CH}_{2}\right)_{2}{ }^{\text {a }}$	$\left(\mathrm{CH}_{2}\right)_{2}{ }^{\text {a }}$	$\left(\mathrm{CH}_{2}\right)_{6}$	30.8	32.8
H	CH_{3}	$\left(\mathrm{CH}_{2}\right)_{5}$	26.1	27.4
$\left(\mathrm{CH}_{2}\right)_{2.0}{ }^{\text {b }}$	$\left(\mathrm{CH}_{2}\right)_{2.5}{ }^{\text {b }}$	$\left(\mathrm{CH}_{2}\right)_{6}$	25.0	25.0
H	H	$\left(\mathrm{CH}_{2}\right)_{5}$	14.8	14.8
H	H	$\left(\mathrm{CH}_{2}\right)_{6}$	11.1	14.1

${ }^{a}$ A 4,4-tetramethylene group. ${ }^{b}$ A 4,4-pentamethylene group. ${ }^{c}$ J. M. McManus and C. F. Gerber, J. Med. Chem., 9, $25 \overline{5}$ (1966). ${ }^{d}$ W. R. Smithfield and W. P. Purcell, J. Pharm. Sci., 56, 577 (1967).

Coulombs law for the interaction of two net charges, q_{r} and q_{8}, separated by a distance, D_{rs}, and a medium whose effective dielectric constant is ϵ_{rs}. The second term essentially contains the difference in energy $E_{m}{ }^{*}$ $E_{n}{ }^{*}$ between the highest occupied AIO of the receptor, Ψ_{m}, and the lowest empty MO of the drug, Ψ_{n}. The coefficients $c_{m \mathrm{r}}$ and $c_{n \mathrm{~s}}$ are the atomic orbital coefficients associated with each MO. A similar expression applies if the highest bonding MO of the drug is filled and the lowest antibonding MO of the receptor is empty.
When the difference between $E_{m}{ }^{*}$ and $E_{n}{ }^{*}$ is large, the interaction between the atoms r and s is primarily determined by the total charges on the two reagents. Klopman and Hudson have termed such an interaction a charge-controlled reaction. For this type of interaction eq 8 becomes eq 9 where $\gamma=\beta^{2} /\left(E_{m}{ }^{*}-E_{n}{ }^{*}\right)$ average.

$$
\begin{equation*}
E_{\mathrm{rs}}=-\frac{q_{\mathrm{r}} q_{\mathrm{s}} e^{2}}{\epsilon_{\mathrm{rs}} D_{\mathrm{rs}}}+2\left(\sum_{m} c_{m \mathrm{r}}^{2}\right)\left(\sum_{n} c_{n \mathrm{~s}}^{2}\right) \gamma \tag{9}
\end{equation*}
$$

On the other hand, when the two frontier orbitals are nearly degenerate, i.e., $E_{m}{ }^{*} \approx E_{n}{ }^{*}$, then the interaction between these orbitals becomes predominant and a frontier-controlled reaction is said to occur. Equation 8 call then be written

$$
\begin{equation*}
E_{\mathrm{rs}}=2 c_{m \mathrm{r}} c_{n \mathrm{~s}} \beta \tag{10}
\end{equation*}
$$

The reactivity in this case is essentially determined by the frontier electron density, $f_{n \mathrm{~s} .}{ }^{12.13}$ Because of the simplicity of this equation, its application to biological systems will be discussed first.

When a series of drugs can be said to function at the same biological receptor site, the coefficient $c_{m r}$ is constant with respect to the coefficient $c_{n s}$ of each drug. By selecting a series of congeneric drugs (e.g., benzoic acid derivatives, nicotinic acid derivatives), a simple proportionality should exist between E_{rs} and $c_{n s}$. Substitution of eq 10 into eq $\overline{5}$ leads, therefore, to all expression which could be evaluated by the usual multiple regression techniques.

$$
\begin{equation*}
A_{n}=\sum_{\mathbf{s}} b_{n \mathrm{~s}} c_{\mathrm{s}}+C \tag{11}
\end{equation*}
$$

While no multiple regression analyses appear to have been reported involving either $c_{n \mathbf{s}}$ or $f_{n s}$, relationships between drug activity and frontier orbital charge density are often observed. ${ }^{18}$ For example, the inhibition potency of some nicotinic acid derivatives seems to be related to the frontier orbital charge density (highest occupied MO) of the carbonyl carbon ${ }^{18}$ (Table IV).

Table IV
Relation between the Inhlbition Potency of Some Nicotinic Acid Derivatives and the Frontier Orbital Charge Density (HoMO) at the Carbonyl Carbon ${ }^{18}$

R	plas	Yrontier orl,ital density, f
OH	0.3	0.262
NH_{2}	1.2	0.616
CH_{3}	2.3	0.657
$\mathrm{OC}_{2} \mathrm{H}_{5}$	3.1	0.699

Charge-controlled interactions (eq 9) can be similarly treated. In this case, considering only directly interacting atoms leads to the possible regression equation

$$
\begin{equation*}
A_{n}=\sum_{\mathrm{s}} b_{n \mathrm{~s}}^{\prime} q_{\mathrm{s}}+C^{\prime} \tag{12}
\end{equation*}
$$

in which the coefficients $b_{n s}{ }^{\prime}$ are given by

$$
b_{n \mathrm{~s}}^{\prime}=\left(\frac{2 e^{2} q_{\mathrm{r}}}{\epsilon_{\mathrm{rs}} D_{\mathrm{rs}}}-\gamma\right)
$$

Again, multiple regression analyses of equations similar to eq 12 do not seem to have been reported, but a simple example of the influence of total electronic charge on biological action can be given (Table V).

[^3]Table ${ }^{1}$

 wn the Poth bimetronic Charge on the: Amno Nithooben"

R,	R.	pl_{50}	\%
11	II	4.206	$+0.13 \%$
II	CH_{3}	4.4 .9	+0.212
11	$\mathrm{Cl}_{1} 1{ }_{5}$	4.864	$+0.209$
ClH_{4}	ClH_{3}	4.666	$+0.276$
C Cl_{1}	$\mathrm{C}_{2} \mathrm{H}_{5}$	5.27	$+0.27 .3$
$\mathrm{C}_{3} \mathrm{ll}_{5}$	$\mathrm{C}_{3} \mathrm{ll}_{7}$	-. 979	$+0.270$

"W. 1'. I'ureell, J. Med. Chom., 9, 294 (1966).
As a very special case of eq 8 , the energies L_{m}^{*} identilied with orbitals of the receptor could be assumed : constant. This would correspond to a situation in which the energy levels of the receptor are very close together and the value $K_{m}{ }^{*}$ used in eq 8 is an averago value. The second term in eq 8 can then be approximated using superdelocalizabilit: $:{ }^{19}$

$$
\begin{equation*}
\dot{E}_{\mathrm{rs}}=-\frac{q_{\mathrm{r}} q_{\mathrm{s}} e^{2}}{\epsilon_{\mathrm{rs}} D_{\mathrm{rs}}}+1 /: q_{\mathrm{r}} \dot{\mathrm{~s}}_{\mathrm{s}}^{1}{ }^{1} \beta \tag{1:3}
\end{equation*}
$$

'This leads to the possible regression equation

$$
\begin{equation*}
A_{n}=\sum_{\mathrm{s}}\left(\xi_{n \mathrm{~s}} y_{\mathrm{s}}+\zeta_{n s} S_{\mathrm{s}}{ }^{k}\right)+C \tag{14}
\end{equation*}
$$

when direct. interactions between the atoms of drug and receptor are considered. A linited number of 3-hydroxyphenyltrimethylannonium derivatives (a total of six methyl, methoxy, and mosubstituted compounds) ("an have their inhibitory potency against AChE related to properties of the 3 -hydroxy oxygen by the equation ${ }^{2}$

$$
\mathrm{p} K_{1}=\frac{-0.5710^{\mathrm{T}}-\frac{2}{(-5.25)}(-6.58)}{(-5.25)}
$$

$$
\left(F^{\prime}=44.44, r=0.98\right)
$$

where qo ${ }^{\text {T }}$ is the total of the σ and π net charges on oxygen and $S_{O}(E)$ is the π-electrophilic superdelocalizability of oxygen. The value in parentheses below each term is the t test on the signific:ance of the coefficients. ${ }^{\text {soa }}$

Desolvation may be introduced into eq 11, 12, and 14 by inchading the limits to the expression tentatively given by Klopntan"

$$
\begin{align*}
& I_{\mathrm{rs}}=\frac{\left(q_{\mathrm{s}}-2 b^{2} c_{n s}^{2} x\right)^{2}-q_{\mathrm{s}}^{2}\left(1-\frac{1}{\epsilon}\right)+}{2 R_{\mathrm{s}}}+\frac{\left(q_{\mathrm{r}}-2 b^{2} c_{m_{\mathrm{r}}^{2}} x\right)^{2}-q_{\mathrm{r}}^{2}}{2 R_{\mathrm{r}}}\left(1-\frac{1}{\epsilon}\right)
\end{align*}
$$

where R is the effective radius of an atom, b is the variational parameter giving the contribution of Ψ_{n} to the perturbed $\backslash O \Psi_{m}$, ind, empirically, $x=q-q(q-1)$. V_{κ} for $q>0, \kappa$ being a miversal constant. From this equation it can be noted that each interacting atom seems to contribute independently to the desolvation

[^4]onergy. Thars, each atonn of a receptor should make an indepondent and constant contribution to the tre solvation accompanying the interaction of a drug with a given receptor.

When there is no charge transer between two interacting centers, as in an ideal ionice interaction, $\iota^{2}=0$ innd ed 1.5 beromes

$$
\begin{equation*}
L_{\mathrm{r} s}=0 \tag{16}
\end{equation*}
$$

Desolvation effects therefore seem to be relatively wnimportant in charge-controlled interactions, and conrelations of drag action by eq 12 and 14 maty therefore be associated with charge-controlled drug-receptor interactions ($f f$. Table V).

At the other extrene, when there is complete charge transfer between drug and receptor, as in the formation of an ideal covalent bond, $b^{2}=1 / 2$ and ea 15 reduces to ${ }^{\circ}$

$$
\begin{equation*}
L_{\mathrm{rs}}=\frac{(q \pm 1)^{2}}{2 R}\left(1-\frac{1}{\epsilon}\right) \tag{17}
\end{equation*}
$$

For this frontier-controlled interaction, eq 11 can be wittell

$$
\begin{equation*}
A_{n}=\sum_{s}\left(b_{n s} c_{s}+\lambda_{n s} \psi_{s} \pm \lambda_{n s}^{\prime} \psi_{s}^{2}\right)+\left({ }^{\prime \prime}\right. \tag{1.5}
\end{equation*}
$$

and correlations of drug action by this equation should be indicative of a frontier-controlled interaction between drug and receptor. One series of sulfanilamides given in Table VI may fit this category, their in vitro activities against. Escherichia coli (minimum inhibitory (oncentration, C_{r}) being correlated by the following equations. The necessary calculations were donc: for

Benzoyl derivatives

$$
\begin{array}{r}
\log \left(1 /\left(_{r}\right)=\frac{2.04 r_{v}}{(1.02)}+\underset{(1.91)}{146.69 q_{N}}-\underset{(-5.09)}{1.59 .99 q_{N}{ }^{2}}+17.6 \%\right) \\
(I=29.68, i=0.97)
\end{array}
$$

Phenyl derivatives

$$
\begin{aligned}
& \log \left(17\left(\sigma_{\mathrm{r}}\right)=2.26 c_{N}+12.336 q_{N}-4.56 .6334_{N^{2}}-3.19\right. \\
& (1.29) \quad(2.21) \quad(-1.36) \\
& (F=42.99, j=0.99)
\end{aligned}
$$

the anilines and the benzanides from which the entresponding sulfanilamides were derived using the Hückel MO parameter suggested by Streitwieser. ${ }^{16}$ It is interesting to note that linear relations betwecm the activities of these compounds and the Hammett σ constant (or $\mathrm{p} K_{\mathrm{a}}$) are of opposite slope ${ }^{2 \cdot 2}$ which may reflect the importance of desolvation of the sulfonamide nitrogen in the benzoyl series as opposed to its relative lack of importance in the phenyl series.

The effect of halide ions on the rate of hydrolysis of ACh by AChE also appears to depend on desolvation effects. The effert of these ions on $A C h$ hydrolysis parallels reasonably well the ratio of the index $E \neq$ to the desolvation energy of these ions (Table VII), where $E^{\ddagger} \neq$ is defined as the electronic component, $E_{r s}$, associated with a free center. ${ }^{13}$ The ratio used may be considered as the atomic analogy of the more familiar thermodynamic ratio $\Delta H / \Delta S$.

Within the approximations used in arriving at eri 12 and 17. Mo methods appear capable of adequately accounting for the desolvation requirements associated

[^5]Table VI
Electronic Characieter of the Nitrogen of Anilines and Benzamides Relative to the in Vitro Activities of the Corresponding Sulfonamides

substituent	$\log \left(1 / C_{5}\right)^{1, b}$	c^{\prime}	$q N$	$q N^{2}$
Anilines				
$4-\mathrm{NH}_{2}$	4.35	0.383	0.077	0.006
$4-\mathrm{CH}_{3} \mathrm{O}$	4.47	0.453	0.081	0.007
$4-\mathrm{CH}_{3}$	4.57	0.453	0.081	0.007
H	4.80	0.477	0.083	0.007
$4-\mathrm{Cl}$	4.80	0.459	0.082	0.007
$4-\mathrm{NO}_{2}$	5.85	0.484	0.106	0.011
Benzamides				
$3-\mathrm{Cl}_{3}$				
$4-\mathrm{CH}_{3} \mathrm{O}$	5.25	0.041	0.148	0.022
4- $\mathrm{CH}_{3} \mathrm{O}$	5.40^{c}	0.035	0.148	0.022
$3,4-\mathrm{CH}_{3}$	万. 40	0.042	0.148	0.022
$4-\mathrm{Cl}_{3}$	5. 40	0.036	0.148	0.022
$3-\mathrm{CH}_{3}$	5.40	0.018	0.149	0.022
H	5.25	0.000	0.149	0.022
$4-\mathrm{Cl}$	- 5.10^{c}	0.027	0.148	0.022
$4-\mathrm{CN}$	$4.00^{\text {c }}$	0.000	0.151	0.023
$4-\mathrm{NO}_{2}$	4.50°	0.000	0.153	0.023
${ }^{\text {a }}$ Minimum inhibitory concentration, C_{r}, against E. coli.				
${ }^{b}$ Data of J. K. Seydel, Mol. Pharmacol., 2, 2599 (1966); J. K.				
seydel and E. Wempe, Arzncimittel-Forsch., 14, 705 (1964). c We are extremely grateful to Dr. Seydel for testing these compounds for us.				

with drug-receptor interactions and therefore show promise of greater utility in the study of drug action. The obvious extension of these equations to a form consistent with the Fujita-Hansch expression (eq 4) will be discussed in a forthcoming paper. It is readily

Table VII
Erpect of lhampe Ions on AChL Hydmorsis of ACh
μ moles of
ACh
${ }^{a}$ Sodium salt in equivalent concentrations. ${ }^{b}$ Data of ref 13 . c B. N. Smallman and L. S. Wolfe, Enzymologia, 17, 13:') (19.54).
shown that the Hansch parameter π may be considered a measure of drug receptor interactions that fit the category of frontier-controlled reactions, but becanse of the denonstrated ${ }^{10}$ importance of this quantity further developnent warrants separate consideration.

An interesting feature of the current approach results from the parallelism between the implications provided by eq 9 and $10^{8.9}$ with regard to the principle of hard and soft acids and bases. ${ }^{23,24}$ If future work bears out the presently promising indications, it may well turn out that a hard-hard, soft-soft complimentarity between the atoms of drug and receptor is a requisite for certain types of drug action.

Acknowledgment.--This work was supported by NIH Grants 2T1-GMI-484 and AI-07811-01. The computer used for the calculations is supported under NIH Grant 5-PO7-lR00016-05. The author sincerely thanks Dr. Federico Peradejordi for many stimulating discussions while this work was in progress.
(23) R. G. Pearson, J. Am. Chem. Soc. 85, 3533 (1963).
(24) R. G. Pearson and J. Songstad, ibid., 89, 1827 (1967).

The Stereoisomers of α-(1-Aminoethyl)-m-hydroxybenzyl Alcohol

Walfred S. Safri, Andrew W. Raab, and Edward L. Engelhardt
Merch Sharp \& Dohme Research Laboratories, Division of Merck \& Co., Inc., West l'oint, I'ennsylvania 16486

Received July 10, 1968

Abstract

A synthesis of the racemic and optically active isomers of threo- α-(1-anuinoethyl)-m-hydroxybenyly alcohol is reported. A discussion of the absolute configuration of these compounds and α-methyl- m-tyramine is presented. Norepinephrine displacement from adrenergic neurons by the threo isomers is discussed.

The sympathomimetic amine, metaraminol (4), (-)-erythro, has received extensive use as a pharmacological tool in studies on the mechanism of amine binding in adrenergic nerve endings. ${ }^{\text {I }}$ Metaraminol is rapidly taken up by sympathetic tissue where it stoichiometrically displaces the normal neurotransmitter, norepinephrine. ${ }^{2}$ Our interest in the relationship betweell amine stereochemistry and affinity for norepinephrine binding sites has led us to prepare the racemic and optically active forms of the threo isomer of 4.

The method of Van Dijk and Moed ${ }^{3}$ was used to prepare previously unreported racemic threo-4 from m -benzyloxy- α-bromopropiophenone (1). Reduction of the amino ketone 2 with SiAlH_{4} gave the thren alcohol

[^6]3 (Scheme I). Debenzylation of 3 to 4 was accomplished in two stages. Catalytic hydrogenation over a Pd-C catalyst in ethanolic HCl at room temperature removed two of the benzyl groups; the third was removed with a $P d-\mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst at higher temperature.
The optically active threo enantiomers 4 were prepared by reaction of the optically active erythro amides 6 with SOCl_{2} followed by hydrolysis of the intermediate (xazolines with dilute HCl . This method has been used frequently in the past to convert erythro amido alcohols to threo amino alcohols in the ephedrine and norephedrine series. ${ }^{4} \quad \mathrm{Nmr}$ spin-coupling constants for the hydrogens situated on $\mathrm{C}-1$ and $\mathrm{C}-2^{5}$ were $8.4 \pm$ 0.2 Hz for the optically active and racemic products,

[^7]
[^0]: (1) Temple U'niversity, School of Pharmacy, Philadelphia, Pa. 19140.
 (2) (a) W. D. M. Paton. Proc. Roy. Soc. (London), B154, 21 (1961): (b)
 E. J. Ariëns, A. M. Simonis, and J. M. van Rossum, Mol. Pharmacol., 1, 136 (1964).
 (3) B. Belleau J. Med. Chem. 7. 776 (1964).
 (4) B. M. Blooin and I. M. Goldinan, Advan. Drug Res., 3, 121 (1966).

[^1]: (5) J. E. Leffler and E. Grunwald. "Rates and Equilibria of Organic Reactions." Joln Wiley and Sons, Inc., New York. N. Y., 1963.

[^2]: (G) (.. Manscl and E. W. Deutsch. Biochim. Biophys. Acta. 126, 117 (1966).
 (5) J. 1'. Hammett, "Pliysical Organic Chemistry," McGraw-Hill Book Co., Inc., New York. N. Y.. 1940; for a compilation of values see H. H. Jaffe, Chem. Rev., 53, 191. (1953).
 (8) T. Fujita.J. Iwasa, and C. Hansch. J. Am. Chem. Soc. 86, 5175 (1964).
 (0) R. W- Taft. "Steric Fiffects in Organic Clemistry," M. Newinan, Ed.小ohn Wiley and Sons, lne. New York, N. Y.. 1956.
 (10) ('. Hansch. "Annual Review of Medicinal Chemistry," C. K. Cain. Vd.. Academic Press, New York, N. Y., 1967.
 (11) B. Belleau and G. Jacasse, J. Mét. (hem.. 7, 68 (1964).

[^3]: (18) A. Inouye, Y. Shinagawa, and Y. Takaishi, Arch. Intern. Pharmacodyn. 144, 319 (1963).

[^4]: (19) Cf. K. Finkil, T. Yonezawa, and C. Nagata, J. Chem, Phys., 27, 124 (1957).
 (20) A. Cammarata and R, l.. Siein, J. Med. Chem., 11, 829 (1968).
 \therefore. Nartin have ol,tained correlations tmsed on ed 14 in which more that whe aldin of a drigy seems to te involved in leading to the ol, served response nacrerial inlithitions).

[^5]: (22) A. Cammarata and R. C. Allen, unpullished resnts.

[^6]: (1) P. A. Shore. Thermacol. Rer., 18, 561 (1966).
 (2) J. R. Crout. Circulation Res., 18, 19, Suppl I, 120 (1966); J. R. Cront.
 H. S. Alpers, E. L. Tatmu, and P. A. Shore. Science. 145, 828 (1964).
 (3) J. Van Dijk and H. D. Moed. Rec. Trav. Chim., 78, 22 (1959).

[^7]: (4) H. K. Muller. Ann.. 599, 61 (1956): 1. Pfanz and H. Muller. Arch. Phurm., 288, 65 (1955).
 (5) See forinula 4 for numbering.

